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Diffusion Large Language Models (dLLMs) break the rigid left-to-right constraint of traditional
LLMs, enabling token generation in arbitrary orders. Intuitively, this flexibility implies a solution
space that strictly supersets the fixed autoregressive trajectory, theoretically unlocking superior
reasoning potential for general tasks like mathematics and coding. Consequently, numerous
works have leveraged reinforcement learning (RL)! to elicit the reasoning capability of dLLM:s.
In this paper, we reveal a counter-intuitive reality: arbitrary order generation, in its current
form, narrows rather than expands reasoning boundary. We find that dLLMs tend to exploit
this flexibility to bypass high-uncertainty tokens that are crucial for exploration, leading to a
premature collapse of the solution space. This observation challenges the premise of existing
RL approaches for dLLMs, where considerable complexities, such as handling combinatorial
trajectories and intractable likelihoods, are often devoted to preserving this flexibility. We
demonstrate that effective reasoning is better elicited by intentionally forgoing arbitrary order
and applying just standard Group Relative Policy Optimization (GRPO) instead. Our approach,
JustGRPO, is minimalist yet surprisingly effective (e.g., 89.1% accuracy on GSM8K) while
fully retaining the parallel decoding ability of dLLMs.

Code and pretrained models are available at https://github.com/LeapLabTHU/JustGRPO
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Figure 1: Less flexibility unlocks better reasoning potential. Left: We observe a counter-intuitive
phenomenon where restricting dLLMs to standard Autoregressive (AR) order expands the reasoning
solution space. Right: Motivated by this, we propose “JustGRPO”. By foregoing complex arbitrary-
order adaptations and adopting standard GRPO, we effectively elicit the reasoning capability of dLLMs.

'In this paper, unless otherwise specified, we use the term RL to refer specifically to Reinforcement Learning with
Verifiable Rewards (RLVR), as it is the predominant paradigm for enhancing the reasoning capabilities of dLLMs.
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The Flexibility Trap

1. Introduction

Recent research has witnessed a surge in Diffusion Large Language Models (dLLMs) (Nie et al., 2025;
Ye et al., 2025; Zhu et al., 2025; Zhao et al., 2025), which challenge the dominant autoregressive
(AR) paradigm (Brown et al., 2020; Achiam et al., 2023) by treating sequence generation as a discrete
denoising process. Central to the appeal of dLLMs is their theoretical flexibility, which offers two distinct
advantages over the strict left-to-right causal chain of AR models: efficient parallel decoding and the
capability for arbitrary-order generation.

While the efficiency gains of parallel decoding have been well-established (Wu et al., 2025b; Labs et al.,
2025; DeepMind, 2025; Song et al., 2025; Wu et al., 2025a), the implications of arbitrary-order generation
remain less explored (Ye et al., 2024; Kim et al., 2025). Theoretically, the unconstrained generation
order constitutes a superset of the fixed autoregressive trajectory. This flexibility naturally suggests a
potential for superior reasoning: in general reasoning tasks like mathematics and coding, such freedom
could unlock non-sequential problem-solving paths inaccessible to standard left-to-right models. As a
result, recent works have increasingly adopted RL to elicit reasoning capabilities of dLLMs (Zhao et al.,
2025; Gong et al., 2025; Wang et al., 2025a; Ou et al., 2025).

In this paper, we present a counter-intuitive observation: arbitrary-order generation, in its current form,
narrows rather than expands the reasoning potential elicitable by RL. To rigorously assess this, we
employ Pass@k (Chen, 2021), which measures the coverage of solution space. Recent studies suggest
that RL primarily acts to sharpen the base model’s distribution; consequently, the Pass@Qk performance
of the base model effectively sets the upper bound for the reasoning capability of the model after RL
training (Yue et al., 2025; Liu et al., 2025; Zhang et al., 2025). Under this metric, we compare the
reasoning potential of LLaDA (Nie et al., 2025) with arbitrary-order generation against standard AR
decoding. As shown in Figure 1 (Left), restricting a dLLM to standard AR order in fact yields a higher
Pass@k, and consequently a higher reasoning boundary, than its flexible counterpart.

We attribute this counter-intuitive phe- @ Uncertain (Forking) Tokens @ Other Tokens
nomenon to the way the model handles un-
certainty. Reasoning process is inherently non- (a) AR Order

uniform, it typically hinges on sparse “forking Confronts Uncertainty .—’.—"—’.—’.—’.

tokens”, i.e., connectives like “Therefore” or
“Since” which do not merely continue a sen-

tence but fundamentally steer the logical tra- X “Too hard, bypass!”
jectory into distinct branches (Wang et al., (b) Arbitrary Order .

2025¢; Cheng et al., 2025; Huang et al., 2025a). Bypasses Uncertainty o— : w
At these forks, the reasoning path diverges, X “Now it is easier”

naturally manifesting as localized spikes in
entropy (Wang et al., 2025¢). Standard AR
decoding compels the model to confront this
uncertainty (Figure 2a). By sampling exactly
at the fork, the model is able to explore differ-
ent reasoning paths, thereby preserving the di-
versity of the generated rationales. Arbitrary-
order generation, however, allows the model to bypass these hard decisions (Figure 2b). It prioritizes
low-entropy completions first. By the time the model returns to infill the bypassed forks, the estab-
lished bidirectional context has already severely constrained the potential branches. The ambiguity is
prematurely resolved, and the original high entropy is suppressed. We term this phenomenon entropy
degradation. Effectively, the model trades the exploration of diverse reasoning paths for the greedy
optimization of local consistency.

Figure 2: Confronting vs. bypassing uncertainty.
(a) AR order preserves reasoning space by forcing
decisions at uncertain tokens. (b) Arbitrary order
bypasses uncertainty and resolves easier tokens first.
Once future context is established, the original forks
collapse, prematurely narrowing the solution space.

The above observations motivate a rethink of RL for dLLMs. Current methods operate under the
assumption that preserving arbitrary-order flexibility is essential. This commitment incurs a heavy tax:
algorithms must grapple with a combinatorial explosion of denoising trajectories (Zhao et al., 2025; Yang
et al., 2025; Gong et al., 2025) and intractable marginal likelihoods (Ou et al., 2025), forcing reliance on
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unstable approximations (Wang et al., 2025a; Ou et al., 2025; Rojas et al., 2025). However, if arbitrary
order is non-essential, or even detrimental for eliciting reasoning potential, this complexity is unjustified.

To this end, we propose a return to simplicity with Just GRPO. We demonstrate that eliciting reasoning
potential for general reasoning tasks does not require complex, diffusion-specific RL adaptations. Instead,
it is best achieved by simply treating the dLLM as an AR model during RL training. This allows us to
apply standard GRPO (Shao et al., 2024) without bells and whistles, turning an otherwise intractable
optimization with unstable approximations into a well-defined task.

JustGRPO is surprisingly effective. On complex reasoning benchmarks, it achieves competitive results
(e.g., 89.1% accuracy on GSM8K, 45.4% on MATH), surpassing methods that rely on complex diffusion-
specific RL. Crucially, while we train with AR constraints to maximize reasoning potential, the model
retains dLLMs’ ability of efficient parallel decoding at inference time. By returning to basic left-to-right
ordering, this work encourages a re-evaluation of arbitrary versus AR order in the development of
next-generation language models.

2. Preliminaries
2.1. Diffusion Large Language Models

Diffusion Large Language Models (dLLMs), particularly Masked Diffusion Models (MDMs), generate
sequences by iteratively denoising a masked state x; initialized from fully masked tokens. The process is
indexed by a continuous time variable ¢ € [0, 1], representing the masking ratio. Given a clean sequence
xg, the forward process independently masks each token with probability ¢:

k1 k& | [MASK], with prob ¢,
atey | o) = {x’g, with prob 1 —t¢.

Unlike Gaussian diffusion, MDMs directly predict the clean token. A neural network py(zo | ) estimates
the original token distribution at masked positions. During inference, generation starts from z; (all
[MASK]) and iteratively unmasks a subset of tokens based on heuristics such as confidence scores,
updating x; — x:_a¢ until completion. As a special case, autoregressive generation can be recovered by
always unmasking the leftmost token. The model is trained by minimizing the Negative Evidence Lower
Bound, which reduces to a weighted cross entropy loss over masked tokens:

L
> " 1[zf = (ASK] log py(af | 2)
k=1

1

Laom(0) = Eizi(0,1], 20~a(alo) [t

2.2. Group Relative Policy Optimization

Group Relative Policy Optimization (GRPO) is a reinforcement learning algorithm that avoids value
function estimation by using group level reward normalization. It is typically applied to autoregressive
policies mg(o, | o<k, q). For each query ¢, GRPO samples a group of G outputs {o1,...,05} from the
old policy my,,. An advantage A; is computed by standardizing the reward r(o;) against the group
statistics: A; = (r(0;) — pa) /oG, where ug and og are the group mean and standard deviation. The
GRPO objective maximizes a clipped surrogate function with a KL regularization term:

G L;
1 1 . .
Jarpo(0) = Byop (046 iy | G 2o 7o D (0 (01 kA clip(pik, 1 = €1+ €) Ai) — BDKL (o |rer)

i=1 "t k=1
(1)
70 (04,k10i, <£,9)

with the token level importance ratio p; = o (oiklo e
Old 1, 2, bl

2.3. Pass@k as a Proxy for Reasoning Potential

To rigorously quantify the reasoning capability boundaries of dLLMs, we adopt the Pass@k metric (Chen,
2021; Yue et al., 2025). In the context of Reinforcement Learning with Verifiable Rewards (RLVR), which
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Figure 3: Reasoning potential measured by Pass@k. While arbitrary order is competitive in
single-shot settings (k = 1), it exhibits notably flatter scaling curves compared to AR Order.

is currently the dominant paradigm for enhancing reasoning capabilities, exploration is a prerequisite for
improvement. An RL agent can only reinforce correct reasoning paths if it is capable of sampling them
during the exploration phase to obtain a positive reward signal.

Accordingly, Pass@k has been widely established as a standard measure of a model’s reasoning po-
tential (Yue et al., 2025; Liu et al., 2025; Zhang et al., 2025). It measures the probability that at
least one correct solution is generated within k independent samples, effectively delineating the upper
bound of the solution space accessible to the RL optimizer. Formally, following the unbiased estimator
formulation (Chen, 2021; Yue et al., 2025), given n samples where ¢ are correct, Pass@k is calculated as:

n—c

)

1k ] (2)
(x)

A high Pass@¥k indicates that the correct reasoning trajectory lies within the model’s sampling distribution

and is thus learnable via RL optimization. Conversely, if a model consistently fails to yield a solution

despite a vast sampling budget, it suggests the problem lies beyond its intrinsic reasoning boundary.

In such scenarios, standard RLVR methodologies are fundamentally limited by the absence of positive
exploration signals (Yue et al., 2025).

Pass@Qk = E

3. The Flexibility Trap

In this section, we rigorously test whether the theoretical flexibility of arbitrary-order generation
translates into higher reasoning potential. We compare two decoding modes: Arbitrary Order, which
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follows standard diffusion decoding low-confidence remasking (Nie et al., 2025; Zhao et al., 2025; Wu
et al., 2025b), and AR Order, where arbitrary-order flexibility is disabled and generation is strictly
constrained to left-to-right decoding. We adopt the commonly used experimental setup in prior diffusion
LLM work: a maximum of 256 tokens decoded over 256 steps, a semi-autoregressive block size of 32.
Sampling temperature is set to 0.6 as in (Yue et al., 2025). The prompt template follows (Zhao et al.,
2025). Results under alternative temperatures and sampling configurations are deferred to Appendix B.

3.1. Arbitrary Order Limits Reasoning Potential

Pass@Fk analysis. We first evaluate the reasoning potential using the Pass@k metric on three represen-
tative dLLMs: LLaDA-Instruct (Nie et al., 2025), Dream-Instruct (Ye et al., 2025), and LLaDA 1.5 (Zhu
et al., 2025) on four reasoning benchmarks: GSM8K, MATH500, HumanEval, and MBPP. As shown in
Figure 3, while arbitrary order often achieves competitive performance at k = 1, it exhibits a notably
flatter scaling curve compared to the AR mode. As k increases, the AR mode demonstrates a stronger
capacity to uncover correct solutions.

Solution space coverage. One might
hypothesize that arbitrary order ex- AO Solved AR Solved Both Solved

plores a different solution space, albeit
less efficiently, which could account for GSM8K MATH-500  HumanEval MBPP

its lower reasoning potential. We test
this by analyzing solution coverage at
k = 1024 using LLaDA-Instruct. Fig-
ure 4 presents a stark reality: the rea-
soning traces generated by arbitrary or-
der are largely a strict subset of those
generated by AR. On HumanEval, AR
solves 21.3% of the problems that arbi-
trary order misses, whereas the reverse
is negligible (0.6%). This indicates that
the flexible decoding process rarely un-
locks genuinely new solutions. Instead, it appears to retreat into a more conservative subset of the AR
solution space.

AO Only: 0.0%  AO Only: 0.6% AO Only: 0.6% AO Only: 0.8%

Figure 4: Solution space coverage measured by Pass@1024.
The reasoning traces generated by arbitrary order are largely
a strict subset of those generated by AR Order.

3.2. Mechanism: The Entropy Degradation

Adaptive decoding bypasses logical forks. To understand why there this
the theoretically superior solution space of dLLMs collapses in practice, To Nowneed
we examine more closely how two decoding modes handle uncertainty. de_te rmineset For
In AR order, the model is constrained to strictly resolve the left- consider|at find <
most unresolved token at each step, forcing the model to confront its calculate £
uncertainty as it arises. In contrast, arbitrary order adaptively selects Given =

tokens to update based on model confidence, preferentially generat-
ing “easy tokens with high certainty while bypassing “hard” ones. Figure 5: Frequently by-
Inspecting the frequently bypassed tokens reveals a clear pattern: As . .
. o o ) . passed tokens in arbitrary or-

shown in Figure 5, the diffusion sampler disproportionately defers d d

. ) - v i . er, measured on MATH-500,
logical connectives and transition markers such as “Therefore”, “Thus”,
and “Since”. Prior work has shown that such tokens are often with
high entropy (which also holds true in dLLMs, see Figure 6), and as
“reasoning sparks” or “logical forks”, functioning as forks that determine subsequent reasoning direc-
tions (Wang et al., 2025¢; Cheng et al., 2025; Wang et al., 2025b; Huang et al., 2025a). In conventional
language models, keeping these tokens in high-entropy state is critical for effective exploration of the
reasoning space (Wang et al.; 2025¢).

are typically logical connectors
and transition words.
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The “entropy degrade” phenomenon. This adaptive [ Atbitrary Order [T AR Order
behavior comes at a cost: the premature collapse of reason-
ing possibilities. We measure the entropy of these pivotal
connectors at decoding. In AR order, these tokens maintain
high entropy, reflecting a genuine branching point where
multiple logical paths remain viable. In contrast, arbitrary
order exhibits a sharp decrease in entropy (Figure 6, with
more results in Appendix B). By deferring the logical con-
nector, the model commits to a specific future outcome
that is generated based on its inherent inductive biases
before deciding the logic that leads there. When the model
eventually returns to fill in the bypassed connector, it is no
longer making a navigational decision at a fork; it is more  Figure 6: Entropy degradation. While
like selecting the connector that grammatically bridges the  the global average entropy of Arbitrary
gap to its pre-generated conclusion. The decoding pro-  Order remains comparable to AR (dashed
cess thus implicitly shifts from reasoning exploration into  lines), the entropy at logical forks drops
semantic pattern matching. We term this phenomenon  significantly (blue bars).

entropy degradation.

—_—
(V)]
L

Average Entropy
o =

: bl <
Bt

Conclusion. In summary, the flexibility of arbitrary order serves as a mechanism for inference-time
exploitation rather than reasoning exploration. By bypassing high-uncertainty tokens, the model
effectively collapses the solution space to a safe, low-entropy path, squeezing out slightly better single-
shot coherence at the expense of reasoning potential. Autoregressive models, by contrast, lack this
bypassing capability and are therefore forced to sample directly from high-entropy distributions at logical
forks. It is precisely this inability to circumvent critical decision points that prevents the premature
narrowing of the search space and preserves the reasoning potential.

4. “Just GRPO” for Diffusion Language Models

The findings in Section 3 suggest that arbitrary order actually limits the reasoning potential accessible to
RL. Despite this, current RL methods for dLLMs remain heavily burdened by the need to preserve this
specific flexibility. In this section, we uncover the heavy “tax” imposed by this flexibility (Section 4.1) and
show that discarding it enables a minimalist yet surprisingly effective solution: JustGRPO (Section 4.2).

4.1. The Flexibility Tax in dLLMs’ RL

Existing diffusion RL methods operate under the premise that the policy must optimize over the full
combinatorial space of denoising trajectories T to preserve the flexibility of arbitrary order generation.
This design choice, while conceptually general, introduces several fundamental challenges.

Ambiguity in token-level decomposition. In dLLMs, a generation state s; is a noisy sequence
conditioned on a stochastic unmasking trajectory 7. Unlike autoregressive models, dLLMs do not admit a
unique, index-aligned conditional probability of the form 7 (o, | s;), making token-level credit assignment

ambiguous and rendering the standard importance ratio p; = % hard to define.

Intractable sequence likelihood. Autoregressive models factorize the sequence likelihood as log (o) =
> tlogm(os | 0<t,q), whereas dLLMs require marginalization over all valid denoising trajectories,
m9(0 | q) = > .7 mo(0,7 | q). For a sequence of length N, the trajectory space grows as |7| = O(N!),
rendering exact likelihood computation infeasible and forcing existing methods to rely on ELBO-based
surrogates rather than the true objective (Wang et al., 2025a; Ou et al., 2025).

Sampler-learner mismatch. Even with an accurate likelihood approximation, a more subtle issue

persists. In practice, rollout samples are produced by heuristic-guided policies o ~ ﬂge“r (0] q) to explore

the combinatorial space. However, the ELBO objective still targets the lihkelihood of the original model
eur

distribution mg(o | ¢), rather than that of the heuristic-guided sampler 74" (o | ¢), leading to a critical
mismatch between sampling and optimization that can degrade performance (Schulman et al., 2015).
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4.2. JustGRPO

We propose a return to simplicity. Since pure autoregressive order yields better reasoning potential
(Section 3), we explicitly forgo arbitrary-order generation during the RL stage. This constraint transforms
the dLLM from a chaotic sequence denoiser into a well-defined autoregressive policy 7T9AR.
Formulation. Standard GRPO assumes a policy 7(0¢|o<, q) accepting a partial sequence o< with all
tokens observed and predicting one token o; at a time, where q is the query. Diffusion language models,
however, are architected as sequence-level denoisers that accept a full sequence with mixed observed
and masked tokens and predict the original values for all masked positions simultaneously.

By forgoing arbitrary-order generation, we are able to bridge the above gap and rigorously define an AR
policy wé"R for dLLMs. To obtain the probability of the next token o; given history o, we construct an
input state £; where the past is observed and the future is masked:

&= lo1,..., 001, [MASK], ..., [MASK]]. (3)

Observed Masked

Although the diffusion language model outputs predictions for all masked positions, the autoregressive

policy concerns only the next token o;. We thus define W?R(Ot|0<t, q) as the probability distribution of
O¢.
WGAR(Ot‘O<t7 q) = Softmax(fo(Z:))t, (4)

where fy is the model logit. Consequently, the likelihood of a complete reasoning chain o is exactly
computable as:

L
iy (0lg) = [ [ ™ (orlo<e, @). ()
t=1

Optimization. The above formulation enables the direct application of standard GRPO to diffusion
language models. For each query ¢, we sample a group of outputs {ol}lG:l using the old policy Tr‘of‘;i. The
objective is:

G |0’
J(0) = EqNP(Q)7{Oi G . AR 1 Z oi Z (min (pi7tfi,~7t,clip(p¢,t, 1—¢,1+ 8)/11‘7,5) — B]D)KL> , (6)

i=1""o,4 | G P | Z| =1

”(?R(Oé‘ol%t )
AT (of]ol. )
the group-standardized advantage.

where p; ; = is the probability ratio between the current and old policies and flm denotes

Remarks. One might worry if training in AR mode reduces the diffusion language model into a standard
autoregressive model. This is not the case. The AR constraint is applied only during training to correctly
assign credit. It refines the model’s joint distribution p(o) without altering the underlying architecture.
At inference time, the model retains its conditional independence properties, still allowing us to employ
parallel samplers (Ben-Hamu et al., 2025) to accelerate decoding. JustGRPO thus achieves the reasoning
depth of autoregressive models while preserving the inference speed of dLLMs (see in Section 5.2).

5. Experiments

We evaluate JustGRPO on standard mathematical reasoning and coding benchmarks. Our experimental
design aims to verify two hypotheses: (i) that enforcing autoregressive (AR) order during RL training
elicits superior reasoning capabilities compared to complex arbitrary-order approximations, and (ii) that
this constraint applies only to the optimization objective, leaving the diffusion model’s parallel decoding
capabilities intact at inference.

Experimental Setups. We apply JustGRPO on LLaDA-Instruct (Nie et al., 2025) and evaluate its
effectiveness on four standard reasoning and coding benchmarks: GSM8K, MATH, HumanEval, and
MBPP. For mathematical tasks, we train on the official training split of each dataset following (Zhao
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Table 1: System-level comparison RL post-training approaches on LLaDA-Instruct. JustGRPO
consistently achieves state-of-the-art performance across all tasks and sequence lengths. LLaDA-1.5 and
LLADOU are excluded from the comparison as LLaDA-1.5 is trained on a privately collected dataset at
a significantly larger scale, while LLADOU modifies the base architecture with an auxiliary module.

GSMS8K MATH-500 HumanEval MBPP
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLADA-1.5 - 83.3 - - - - 293 396 519 396 399 388
LLADOU - 88.1 - - 11.1 - - 59.1 - - 51.6 -
D1 73.2 81.1 82.1 33.8 38.6 40.2 - - - - - -
WD1 772 80.8 823 333 344 39.0 - - - - - -
d-TreeRPO - 81.2 82.6 - 37.7 389 - - - - - -
ESPO 80.0 823 83.7 36.0 39.0 434 281 421 50.0 474 44.6 442
GDPO 784 828 845 332 396 414 262 39.6 39.0 43.6 50.6 47.1
SPG 785 86.1 84.5 33.4 40.0 41.8 - - - - - -

JustGRPO (Ours) 83.8 89.1 89.8 39.0 45.1 45.2 37.8 49.4 487 50.6 52.4 49.0

et al., 2025; Ou et al., 2025). For coding tasks, we train on a subset of AceCoder-87K (Zeng et al., 2025)
following (Gong et al., 2025; Ou et al., 2025). We apply JustGRPO directly to the models without
additional task-specific SET. Our training recipe largely follows (Huang et al., 2025b). To evaluate the
trained models, we follow the standard LLaDA evaluation protocol (Nie et al., 2025), which applies
low-confidence remasking together with semi-autoregressive decoding in blocks of 32 tokens, using a
sampling temperature of 0. We evaluate all benchmarks at generation lengths of 128, 256, and 512
following (Zhao et al., 2025; Ou et al., 2025). More details on training are provided in Appendix A.

5.1. Main Results

Table 1 reports the system-level comparison. We observe that simplifying the training objective to a

standard autoregressive formulation yields consistent improvements over methods specifically designed
for dLLMs.

Performance on reasoning tasks. On GSMS8K, JustGRPO achieves 89.1% accuracy (seq len 256),
improving upon the previous best method, SPG, by a non-trivial margin (3.0%). This trend generalizes
to the more challenging MATH-500 benchmark, where our approach outperforms ESPO by 6.1%. These
results challenge the prevailing assumption that RL for diffusion models requires optimizing over the
full combinatorial space of denoising trajectories. Instead, treating the dLLM as a sequential generator
during training appears more effective for credit assignment in logic-heavy tasks.

Robustness across generation budgets. A potential concern is that AR constraints might overfit
the model to specific trajectory lengths. However, we observe robust performance gains across varying
sequence lengths (128, 256, 512). This stability suggests that the policy has improved its fundamental
reasoning capability, i.e., the ability to navigate logical branches, rather than merely memorizing
fixed-length patterns.

5.2. JustGRPO Preserves Parallel Decoding

We further investigate whether the AR training constraint compromises the model’s inherent diffusion
capabilities. We employ the training-free Entropy Bounded (EB) Sampler (Ben-Hamu et al., 2025) to
evaluate inference performance under varying degrees of parallelism (tokens per step).

Figure 7 reveals that our model not only retains full compatibility with parallel decoding but exhibits a
strictly superior trade-off between speed and accuracy. Surprisingly, the performance gain becomes more
pronounced as parallelism increases. As shown in the MBPP and HumanEval results, while the baseline’s
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Figure 7: JustGRPO preserves the parallel decoding capability of dLLMs. Interestingly, when
compared to the original instruct model, accuracy gain is larger with more parallel tokens, likely due to
more robust reasoning capabilities after JustGRPO training. We adopt training-free EB-sampler (Ben-
Hamu et al., 2025) for parallel decoding.

performance degrades sharply with more aggressive parallel steps, our model maintains stability. For
instance, on MBPP, the accuracy gap expands from +10.6% at conservative settings (1 tokens/step) to
+25.5% at aggressive settings (~5 tokens/step).

This observation suggests that JustGRPO does not merely fit a specific decoding path; rather, it learns a
more robust reasoning manifold that is resilient to the approximation errors inherent in parallel sampling.
The AR formulation thus acts as an effective training scaffold that refines the joint distribution p(o)
during optimization, providing a more stable foundation for parallel samplers to exploit at inference.

6. Related Work

Diffusion language models. Inspired by the success of diffusion models in continuous image do-
mains (Ho et al., 2020; Rombach et al., 2022), recent work has extended diffusion to discrete text
generation. Early approaches operating in continuous embedding spaces (Li et al., 2022; Gong et al.,
2022; Han et al., 2022) suffered from optimization and discretization issues. In contrast, masked diffusion
models (Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024), which define the diffusion
process directly in the discrete token space via random masking, have become the dominant paradigm.
Notably, recent large-scale models such as LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025) demon-
strate scalability and performance competitive with autoregressive (AR) models. The emergence of such
large-scale diffusion language models has spurred a growing body of follow-up studies exploring their
distinctive modeling and inference properties. Among various advantages discussed in the literature, two
aspects have received particular attention. First, dLLMs naturally support parallel decoding, enabling
significant inference acceleration (Wu et al., 2025b; Ben-Hamu et al., 2025; Labs et al., 2025; DeepMind,
2025; Song et al., 2025). Second, their non-autoregressive formulation allows for arbitrary-order token
generation, which has been hypothesized to benefit complex reasoning by relaxing strict left-to-right
constraints (Ye et al., 2024; Kim et al., 2025).

The value of order arbitrariness. While early studies validated the utility of arbitrary order
generation in constrained tasks like Sudoku and Zebra Puzzles (Ye et al., 2024; Nie et al., 2025; Kim
et al., 2025), recent research has begun to investigate its value in standard reasoning domains. One
line of research, exemplified by Dream-Coder (Xie et al., 2025) and DiffuCoder (Gong et al., 2025),
shows that diffusion models can naturally exhibit non-standard, human-like decoding behaviors (e.g.,
sketch-first reasoning) without any explicit supervision on generation order. DiffuCoder (Gong et al.,
2025) further quantifies this phenomenon by demonstrating that higher sampling temperatures reduce
AR-ness, with increased order randomness correlating with improved output diversity. Another line of
research, exemplified by P2 (Peng et al., 2025) and LLaDOU (Huang et al., 2025b), explicitly optimizes
the decoding strategy for better generation order, thus better performance. Despite these advances, it
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remains unclear whether the observed gains primarily arise from better exploitation of existing solution
patterns encoded in the data and model, or whether order arbitrariness itself enables qualitatively new
reasoning strategies that are unattainable under a purely autoregressive decoding regime.

Reinforcement learning for diffusion language models. Reinforcement learning for dLLMs faces
structural optimization hurdles distinct from the autoregressive paradigm, primarily stemming from the
combinatorial explosion of denoising trajectories. While early attempts (Zhao et al., 2025; Yang et al.,
2025; Gong et al., 2025) sought to adapt token-level formulations directly, they were fundamentally
limited by ill-defined state transitions, necessitating reliance on unstable mean-field approximations.
Consequently, the field has shifted toward sequence-level perspectives (Zhu et al., 2025; Wang et al.,
2025a; Rojas et al., 2025; Ou et al., 2025), employing various surrogates to approximate the intractable
marginal likelihood. Yet, a critical off-policy misalignment persists across these methods: the heuristic-
guided sampling required for efficient exploration diverges from the underlying diffusion prior, rendering
gradients biased without principled correction (Schulman et al., 2015). Two notable exceptions partially
address these issues. LLaDOU (Huang et al., 2025b) explicitly models token position selection via
an auxiliary policy, enabling direct estimation of trajectory likelihoods, while TraceRL (Wang et al.,
2025d) aligns optimization with inference traces through a shrinkage-based step-wise MDP formulation.
Nevertheless, these approaches remain committed to preserving the full arbitrary-order generation
mechanism, implicitly treating its structural complexity as indispensable, whereas we question whether
effective RL training can be achieved more simply by reexamining the necessity of arbitrary order itself.

7. Conclusion

The intuitive appeal of diffusion language models (dLLMs) lies in their order arbitrariness, often perceived
as a superior mechanism for navigating complex reasoning paths. Our study reveals a counter-intuitive
reality: this unrestricted flexibility in fact narrows the reasoning potential. By allowing the model
to bypass high-entropy tokens, effectively skipping the most demanding logical branches, arbitrary-
order generation acts as an exploitation mechanism that prioritizes greedy optimization of individual
trajectories at the expense of broader solution coverage.

Therefore, the elicitation of the reasoning capability of dLLMs can be easier. By operating dLLMs in a
standard autoregressive way, we enable the direct application of Group Relative Policy Optimization
(GRPO) without any complex adaptations tailored for order arbitrariness. This intentional constraint
paradoxically yields a significant upgrade in reasoning performance, while fully preserving the parallel
decoding capabilities of dLLMs. By returning to the basic, natural left-to-right order of language
modeling, we hope to encourage a re-examination of its real value in the training of next-generation
diffusion models.
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Appendix
A. Experimental Details
A.1. Data Preparation

For mathematical reasoning tasks, we train on the official training split of each dataset, following the
standard protocol in (Zhao et al., 2025; Ou et al., 2025). For code generation tasks, we adopt the
AceCoder-87K dataset (Zeng et al., 2025). Following the data processing pipeline of DiffuCoder (Gong
et al., 2025), we further select 21K challenging samples from AceCoder-87K that are equipped with
verifiable unit tests.

A.2. Training Configuration

Our training setup largely follows (Huang et al., 2025b). Different from (Huang et al., 2025b), we
perform reinforcement learning directly on the dLLM without introducing training modules. During the
rollout phase, we adopt exact autoregressive sampling, which allows direct log-probability computation
under the standard GRPO formulation. We also reduce the total number of training steps, as JustGRPO
exhibits fast and stable convergence. All experiments are conducted on 16x NVIDIA H100 GPUs.
Training on GSMS8K takes approximately three days. Detailed hyperparameters are reported in Table 2.

Table 2: Training hyperparameters for JustGRPO.

Hyperparameter Value
Base Model LLaDA 8B Instruct
RL Algorithm GRPO
Optimizer AdamW
Learning Rate 5x 1076
LR Scheduler Constant
Weight Decay 0.0
Optimizer Betas (81, 52) (0.9,0.999)
Global Batch Size 64
Group Size (G) 16
Policy Update Steps 1
Training Steps 125
Max Completion Length 256
Sampling Temperature 1.0

KL Penalty Coefficient 0.0

A.3. Reward Function

Mathematical Reasoning Tasks. We employ a binary reward scheme. Each completion receives a
reward of 1 if and only if the final answer is mathematically equivalent to the ground-truth solution,
and 0 otherwise following (Huang et al., 2025b).

Code Generation Tasks. For code generation, the total reward r is defined as a weighted sum of a
correctness reward reoqe and a format reward Tormat:
T = Tcode + T'format- (7>
e Correctness reward (rcode): Defined as the pass rate (ranging from 0 to 1) of the generated code
on the provided unit tests. This term is only evaluated when rgmat = 1.
e Format reward (7format): A heuristic reward designed to encourage syntactically valid outputs.

— 1.0: A valid Markdown code block with correct Python syntax.
— 0.5: A valid Markdown code block that contains syntax errors.
— 0.0: Failure to generate a valid Markdown code block.
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B. More Analysis Results

To further validate the robustness of our findings in Section 3, we conduct extended analyses on the
HumanEval benchmark using the LLaDA-Instruct model (Nie et al., 2025). We investigate the impact
of temperature, sampling strategies, and decoding block sizes on reasoning performance.

B.1. Temperature analysis.
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Figure 8: Pass@QK comparison with different temperatures.

As shown in Figure 8, the AR mode exhibits a standard pattern: performance peaks at moderate
temperatures (7" =~ 0.6) and degrades when 7" > 1.0, whereas the Arbitrary Order mode attains its peak
performance at higher temperatures.

This observation aligns with the entropy degradation mechanism discussed in Section 3: the diffusion
sampler inherently suppresses uncertainty at critical branching points, thereby requiring higher tem-
peratures to induce sufficient exploration. Crucially, even under these optimized settings, the arbitrary
order mode fails to match the reasoning potential of the AR mode. As illustrated in the “Optimal”
comparison setting (bottom right of Figure 8), the best-performing AR configuration still outperforms
the optimal arbitrary order baseline in scaling behavior. A plausible explanation is that excessively high
temperatures in arbitrary order decoding inject noise into tokens that require high determinism (e.g.,
code syntax or mathematical suffixes), leading to nonsensical outputs and degraded results (Wang et al.,
2025c¢).

B.2. Different sampling algorithms.

We also experiment with different sampling algorithms, such as negative entropy sampling (Neg-Entropy)
(Ye et al., 2025) and top-k margin sampling (Margin) (Kim et al., 2025) in Figure 9(a). The results
show that although a more considered sampling algorithm can achieve better pass@k performance than
default confidence-based sampling, it still cannot catch up with AR order. Meanwhile, these better
pass@k algorithms also show slightly worse pass@1 performance compared to confidence-based sampling,
making the whole pass@¥k curve more close to AR order’s pass@k curve. To investigate this similarity, we
calculate the per-problem accuracy correlation between different sampling algorithms and the AR mode
(Figure 9(b)). We observe that algorithms with higher scaling potential (higher pass@128) consistently
show stronger correlation with AR, with the most effective method (Neg-Entropy) achieving a correlation
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Figure 9: (a) Sampling algorithm comparison. (b) Correlation between different sampling
algorithms and AR in per-problem accuracy. We compare different sampling algorithms in pass@k
performance and correlation with AR in per-problem accuracy.

of 0.970. This suggests that sampling algorithms with better pass@k tend to behave more like AR in
terms of task-level performance characteristics.

B.3. Block size analysis.
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Figure 10: Pass@k comparison with different semi-autoregressive block sizes of arbitrary order
(AO) generation. Smaller block sizes explicitly restrict the model’s order flexibility, leading to a more
AR-like behavior and better pass@k performance.

We analyze the effect of the semi-autoregressive block size in Figure 10. The AR Order (which is
effectively block size of 1) maintains a clear advantage across all tested block sizes. Furthermore, we
observe a trend of improvement in pass@k as the block size decreases (from 128 to 8). Since smaller
block sizes explicitly restrict the model’s order flexibility, this trend is aligned with our finding that less
order flexibility leads to better reasoning potential.

B.4. Entropy Comparison Results on More Forking Tokens

To validate the robustness of the “entropy degrade” phenomenon observed in Section 3, we extended our
analysis to a wider range of logical connectors. We conducted experiments on a comprehensive set of
common logical connectors that typically serve as pivotal decision points in reasoning chains.

The results, shown in Figure 11, demonstrate that the phenomenon is consistent across these diverse
tokens. Similar to the primary findings, the AR order maintains higher average entropy at these forks,
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Figure 11: Entropy comparison results on more forking tokens.

indicating active reasoning and decision-making. Conversely, the Arbitrary Order consistently results in
lower entropy, confirming the premature collapse of branching possibilities.

The specific forking tokens evaluated in this extended experiment include: “Therefore”, “Thus”, “So”,
“Since”, “When”, “Given”, “However”, “Let”, “First”, “Then”, “Next”, “Finally”, “Now”, “Similarly”, “Calcu-
late”, “Solving”, “Notice”, “Specifically”, “Follows”, “Because”, “But”, “Or”, “Consider”, “Also”, “Express”,
and “Write”.
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